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1. Introduction

< Traditional BP neuronet

«= Slow convergence
«= local-minima existence

« Most practical systems have multiple inputs

« Thus, a special multi-input neuronet
equipped with weights-and-structure-
determination algorithms is needed



2 Theoretlcal Basis and Analysis

Definition 1. For the variable = € [—1,1], the (j + 2)th
Legendre orthogonal polynomial can be defined as

274+1
=0
with ¢1(x) = 1 and po(z) = =,

1
pjra(z) = rpji1(z) — Fﬂf’jﬂﬂ‘-‘}:

where ;(z) also denotes the Legendre orthogonal polynomial
of degree 7, with j =1,2.3,---

Proposition 1. For two continuous independent variables
x1 and 9, let F/(x1,z2) denote a given continuous function.
Then, there exist polynomials gi(z1) and hg(zo) (with k =
1,2,3,---) to formulate F'(z;,x2); ie.,

F(zy,22) ng (1) hic(2). (1)
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3. Model and Algorithms

With k& = =% | Ng— Ny +n,
we detail {¢p(x1,z2)} below:
[ ¢1(z1,22) = p1(z1)p1(z2),
¢2(T1,T2) = w1 (T1)p2(T2),

‘?E'Nl (II:IE) =¥ (Il)"'Jle (IE)J
on, +1(T1, T2) = pa(z1)w1(T2),

¢N1+Ng (:I:l 3 EE:’ = Y2 [:Il )t.leg (Iﬂ}i

Ok(T1,T2) = @m(T1)n(T2),

DK (mlv 11:2) — "PM(El)':PNM ("Ti"’)

Besides, the basis functions used to approximate the target
function F'(x1,z2) can be generated in a given order. For
better understanding, two typical orders are presented. which
can be expressed as the following limitations via a given
positive integer ¢ larger than 1 (i.e., 2 > 1):

Limitation L. M =i, and N, =i withm=1,2,..- | M;
Limitation Il. M =:—1,and N, =7 —m with m =1, 2,
3,---,M.

So, the total number of basis functions K can be determined
by K = i? corresponding to Limitation I or K = i(i —1)/2
corresponding to Limitation I1. It is worth noting that these two
limitations are further investigated in the ensuing sections.



3. Model and Algorithms
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Fig. 1. Model structure of the 2-input Legendre orthogonal polynomial neuronet (2ILOPN).




__ odel and Algorithms

With the mean square error (MSE) defined as

Q K
E = Z ('}’q = Z wﬁcﬁ‘*"k(?iq}) }/Q

we can have the WDD method.

2

w=(®'®) '@,

.
o

ur — : ERK1 ¥ =

wWE

o) )
d1(xz2) P2(x2)

_¢1(.xca) @ﬁ?(;cq}

: P (XQ).

-’}“1 _
Y2

o
¢5K()C1)-
oK (x2)

c R9

1

B

(3)

(4)




S e e riat st Algorithms

Before presenting such weights-and-structure-
determination (WASD) algorithms, let us test the
following three target functions to investigate the
relationship between the MSE (3) and the number

of hidden-layer neurons.

F(z,,22) =10 sin(ﬂzl)e_fzzl}g_{hﬂ}ﬂr (5)
Fz1,22) = 4e~517(222)" 41, (6)
F(z,,25) = sin(mz25) + 20. (7)
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(a) For target function (5) (b) For target function (6) (c) For target function (7)

Fig. 2. Relationship between the MSE (i.e., £ with ¢) = 1156) and the number of hidden-layer neurons (i.e., K') with Limitation L.
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(a) For target function (5) (b) For target function (6) (c) For target function (7)

Fig. 3. Relationship between the MSE (i.e., E with ¢) = 1156) and the number of hidden-layer neurons (i.e., K') with Limitation IL




3. Model and Algorithms
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Fig. 4. Flowchart of the WASD algonthms for the 2ILOPN.




3. Model and Algorithms

— Limitation I. M =7, and N, = ¢ with m=1,2,--- | M;
[ Initialize J Limitation II. M =:—1,and N,, =2 —m withm = 1,2,
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let Bo = F, i, —%tand K =K

Fig. 4. Flowchart of the WASD algonthms for the 2ILOPN.




4. Numerical Study Results

TABLE 1

APPROXIMATION AND TESTING RESULTS OF THE 2ILOPN ABOUT THREE TARGET FUNCTIONS (5)-(7)

Target function (5)

Target function (&)

Target function (7)

Limitation 1 Limitation II Limitation 1 Limitation II Limitation I Limitation IT
b 2869 106 2108 276 1014 231
Eapprox 9.240 x 10714 | 5937 x 10~1% | 2,934 x 10712 | 2.454 x 10717 | 4194 x 10~1® | 2.645 x 1018
Bt 6.606 x 1012 | 0,928 x 10~ | 6.726 x 1012 | 8.715 x 10~1¢ | 2,403 x 10—1% | 2.926 x 10—18
WASD runtime (s) 326.935 13.731 211.585 5.300 73.346 3.570

Training data : [-1,1]% , 0.06

Testing data : [-1 1]¢, 0.029




4. Numerical Study Results
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(d) Approximation with Limitation II

(e) Testing with Limitation IT

(f) Relative error corresponding to (e)

Fig. 5. Approximation and testing results

of the 2ILOPN with either Limitation I or Limitation IT about target function (6).
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Fig. 6. Approximation. prediction and testing results of the 2ILOPN with either Limitation I or Limitation II about target function (7).



5. Conclusion

< In this paper, the 2-input Legendre orthogonal polynomial
neuronet (2ILOPN) has been proposed and investigated,
which has solidly laid a basis for further research on multi-
Input neuronets. In addition, two weights-and-structure-
determination (WASD) algorithms of growing type have
been developed to determine the optimal number of
hidden-layer neurons and simultaneously obtain the
weights between the hidden-layer and output-layer
neurons directly. Numerical-study results have further
demonstrated the efficacy of the 2ILOPN equipped with the
two WASD algorithms on approximation, generalization
and prediction.



