

Growing-Type Weights and Structure Determination of 2-Input Legendre Orthogonal Polynomial Neuronet

Yunong Zhang, Jinhao Chen, Dongsheng Guo, Yonghua Yin and Wenchao Lao School of Information Science and Technology Sun Yat-sen University

1. Introduction 2. Theoretical Basis and Analysis 3. Model and Algorithms 4. Numerical Study Results 5. Conclusion

1. Introduction

Traditional BP neuronet

slow convergence
 local-minima existence

Most practical systems have multiple inputs

 Thus, a special multi-input neuronet equipped with weights-and-structuredetermination algorithms is needed

2. Theoretical Basis and Analysis

Definition 1. For the variable $x \in [-1, 1]$, the (j + 2)th Legendre orthogonal polynomial can be defined as

$$\varphi_{j+2}(x) = \frac{2j+1}{j+1} x \varphi_{j+1}(x) - \frac{j}{j+1} \varphi_j(x),$$

with $\varphi_1(x) = 1$ and $\varphi_2(x) = x$,

where $\varphi_j(x)$ also denotes the Legendre orthogonal polynomial of degree j, with $j = 1, 2, 3, \cdots$.

Proposition 1. For two continuous independent variables x_1 and x_2 , let $F(x_1, x_2)$ denote a given continuous function. Then, there exist polynomials $g_k(x_1)$ and $h_k(x_2)$ (with $k = 1, 2, 3, \cdots$) to formulate $F(x_1, x_2)$; i.e.,

$$F(x_1, x_2) = \sum_{k=1}^{\infty} g_k(x_1) h_k(x_2).$$
(1)

2. Theoretical Basis and Analysis

Definition 1. For the variable $x \in [-1, 1]$, the (j + 2)th Legendre orthogonal polynomial can be defined as

$$\varphi_{j+2}(x) = \frac{2j+1}{j+1} x \varphi_{j+1}(x) - \frac{j}{j+1} \varphi_j(x),$$

with $\varphi_1(x) = 1$ and $\varphi_2(x) = x$,

where $\varphi_j(x)$ also denotes the Legendre orthogonal polynomial of degree j, with $j = 1, 2, 3, \cdots$.

Proposition 1. For two continuous independent variables x_1 and x_2 , let $F(x_1, x_2)$ denote a given continuous function. Then, there exist polynomials $g_k(x_1)$ and $h_k(x_2)$ (with $k = 1, 2, 3, \cdots$) to formulate $F(x_1, x_2)$; i.e.,

$$F(x_1, x_2) = \sum_{k=1}^{\infty} g_k(x_1) h_k(x_2).$$
(1)

(1) can be reformulated as

$$F(x_1, x_2) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_m \varphi_m(x_1) b_n \varphi_n(x_2)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \omega_{m,n} \varphi_m(x_1) \varphi_n(x_2)$$

$$\approx \sum_{m=1}^{M} \sum_{n=1}^{N_m} \omega_{m,n} \varphi_m(x_1) \varphi_n(x_2)$$

$$= \sum_{m=1}^{M} \varphi_m(x_1) \left(\sum_{n=1}^{N_m} \omega_{m,n} \varphi_n(x_2) \right)$$

$$= \sum_{k=1}^{K} w_k \phi_k(x_1, x_2)$$

With $k = \sum_{d=1}^{m} N_d - N_m + n$, we detail $\{\phi_k(x_1, x_2)\}$ below: $\phi_1(x_1, x_2) = \varphi_1(x_1)\varphi_1(x_2),$ $\phi_2(x_1, x_2) = \varphi_1(x_1)\varphi_2(x_2),$ $\phi_{N_1}(x_1, x_2) = \varphi_1(x_1)\varphi_{N_1}(x_2),$ $\phi_{N_1+1}(x_1, x_2) = \varphi_2(x_1)\varphi_1(x_2),$ $\phi_{N_1+N_2}(x_1,x_2) = \varphi_2(x_1)\varphi_{N_2}(x_2),$ $\phi_k(x_1, x_2) = \varphi_m(x_1)\varphi_n(x_2),$ $\phi_K(x_1, x_2) = \varphi_M(x_1)\varphi_{N_M}(x_2).$

Besides, the basis functions used to approximate the target function $F(x_1, x_2)$ can be generated in a given order. For better understanding, two typical orders are presented, which can be expressed as the following limitations via a given positive integer *i* larger than 1 (i.e., i > 1):

Limitation I. M = i, and $N_m = i$ with $m = 1, 2, \dots, M$; **Limitation II.** M = i - 1, and $N_m = i - m$ with $m = 1, 2, 3, \dots, M$.

So, the total number of basis functions K can be determined by $K = i^2$ corresponding to Limitation I or K = i(i-1)/2corresponding to Limitation II. It is worth noting that these two limitations are further investigated in the ensuing sections.

Fig. 1. Model structure of the 2-input Legendre orthogonal polynomial neuronet (2ILOPN).

With the mean square error (MSE) defined as

$$E = \sum_{q=1}^{Q} \left(\gamma_q - \sum_{k=1}^{K} w_k \phi_k(\boldsymbol{\chi}_q) \right)^2 / Q.$$
(3)

we can have the WDD method.

$$\boldsymbol{w} = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\gamma}, \tag{4}$$

$$\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_K \end{bmatrix} \in R^K, \quad \boldsymbol{\gamma} = \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_Q \end{bmatrix} \in R^Q,$$
$$\boldsymbol{\Phi} = \begin{bmatrix} \phi_1(\boldsymbol{\chi}_1) & \phi_2(\boldsymbol{\chi}_1) & \dots & \phi_K(\boldsymbol{\chi}_1) \\ \phi_1(\boldsymbol{\chi}_2) & \phi_2(\boldsymbol{\chi}_2) & \dots & \phi_K(\boldsymbol{\chi}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\boldsymbol{\chi}_Q) & \phi_2(\boldsymbol{\chi}_Q) & \dots & \phi_K(\boldsymbol{\chi}_Q) \end{bmatrix} \in R^{Q \times K}.$$

Before presenting such weights-and-structuredetermination (WASD) algorithms, let us test the following three target functions to investigate the relationship between the MSE (3) and the number of hidden-layer neurons.

$$F(x_1, x_2) = 10\sin(x_1)e^{-(2x_1)^2 - (2x_2)^2},$$
(5)

$$F(x_1, x_2) = 4e^{-x_1^2 - (2x_2)^2} + 10,$$
(6)

$$F(x_1, x_2) = \sin(\pi x_1 x_2) + 20.$$
⁽⁷⁾

Fig. 4. Flowchart of the WASD algorithms for the 2ILOPN.

Fig. 4. Flowchart of the WASD algorithms for the 2ILOPN.

4. Numerical Study Results

TABLE I APPROXIMATION AND TESTING RESULTS OF THE 2ILOPN ABOUT THREE TARGET FUNCTIONS (5)-(7)

	Target function (5)		Target function (6)		Target function (7)	
	Limitation I	Limitation II	Limitation I	Limitation II	Limitation I	Limitation II
K_{\min}	2869	406	2108	276	1014	231
$E_{ m approx}$	9.240×10^{-14}	5.937×10^{-16}	2.934×10^{-12}	2.454×10^{-17}	4.194×10^{-18}	2.645×10^{-18}
$E_{ m test}$	6.606×10^{-13}	9.928×10^{-16}	6.726×10^{-12}	8.715×10^{-16}	2.403×10^{-18}	2.926×10^{-18}
WASD runtime (s)	326.935	13.731	211.585	5.309	73.346	3.570

Training data : [-1,1]² , 0.06

Testing data : $[-1 \ 1]^2$, 0.029

4. Numerical Study Results

(a) Approximation with Limitation I

13

(b) Testing with Limitation I

(d) Approximation with Limitation II

-1 -1

-0.5

-0.5

0.5

(e) Testing with Limitation II

(f) Relative error corresponding to (e)

Fig. 5. Approximation and testing results of the 2ILOPN with either Limitation I or Limitation II about target function (6).

(c) Relative error corresponding to (b)

4. Numerical Study Results

(a) Approximation with Limitation I

(d) Approximation with Limitation II(e) Prediction and testing with Limitation II(f) Relative error corresponding to (e)Fig. 6. Approximation, prediction and testing results of the 2ILOPN with either Limitation I or Limitation II about target function (7).

5. Conclusion

In this paper, the 2-input Legendre orthogonal polynomial neuronet (2ILOPN) has been proposed and investigated, which has solidly laid a basis for further research on multiinput neuronets. In addition, two weights-and-structuredetermination (WASD) algorithms of growing type have been developed to determine the optimal number of hidden-layer neurons and simultaneously obtain the weights between the hidden-layer and output-layer neurons directly. Numerical-study results have further demonstrated the efficacy of the 2ILOPN equipped with the two WASD algorithms on approximation, generalization and prediction.